Glycosylation affects the rate of traffic of the Shaker potassium channel through the secretory pathway.

نویسندگان

  • Natalie F de Souza
  • Sanford M Simon
چکیده

We have examined the effect of glycosylation on the traffic of the voltage-gated Shaker potassium channel through the secretory pathway of mammalian cells. Shaker is glycosylated on two asparagines (N259 and N263) in the first extracellular loop. Electrophysiological experiments indicate that glycosylation is not necessary for channel integrity [Santacruz-Toloza et al. (1994) Biochemistry 33, 5607]. Consistent with this, we observe that unglycosylated N259Q+N263Q mutant channel forms oligomers as efficiently as the wild type and that this occurs in the endoplasmic reticulum. We have compared the kinetics of secretory traffic of the wild-type glycosylated and the N259Q+N263Q unglycosylated channels. Surface biotinylation of newly synthesized proteins indicates that the rate of delivery of the unglycosylated channel to the cell surface is slower than that of wild type. We have further dissected channel traffic using quantitative imaging. We observe that mutant channel traffics more slowly from the endoplasmic reticulum to the Golgi than wild type at 20 degrees C. This may contribute to the slowed delivery of the mutant to the cell surface. Neither the surface fraction at steady state nor the stability of Shaker is significantly affected by glycosylation in COS cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Traffic of Kv4 K+ channels mediated by KChIP1 is via a novel post-ER vesicular pathway

The traffic of Kv4 K+ channels is regulated by the potassium channel interacting proteins (KChIPs). Kv4.2 expressed alone was not retained within the ER, but reached the Golgi complex. Coexpression of KChIP1 resulted in traffic of the channel to the plasma membrane, and traffic was abolished when mutations were introduced into the EF-hands with channel captured on vesicular structures that colo...

متن کامل

Glycosylation of shaker potassium channel protein in insect cell culture and in Xenopus oocytes.

We have studied the glycosylation of Shaker K+ channel protein made in two expression systems: an insect cell culture line and amphibian oocytes. In both systems, two potential sites for N-linked glycosylation were modified. The modified sites were located between the first and second putative transmembrane segments, S1 and S2. Although the same sites appeared to be glycosylated in both systems...

متن کامل

Allosteric coupling of the inner activation gate to the outer pore of a potassium channel

In potassium channels, functional coupling of the inner and outer pore gates may result from energetic interactions between residues and conformational rearrangements that occur along a structural path between them. Here, we show that conservative mutations of a residue near the inner activation gate of the Shaker potassium channel (I470) modify the rate of C-type inactivation at the outer pore...

متن کامل

Investigating the Putative Glycine Hinge in Shaker Potassium Channel

The crystal structure of an open potassium channel reveals a kink in the inner helix that lines the pore (Jiang, Y.X., A. Lee, J.Y. Chen, M. Cadene, B.T. Chait, and R. MacKinnon. 2002. Nature 417:523-526). The putative hinge point is a highly conserved glycine residue. We examined the role of the homologous residue (Gly466) in the S6 transmembrane segment of Shaker potassium channels. The nonfu...

متن کامل

Functional stoichiometry of Shaker potassium channel inactivation.

Shaker potassium channels from Drosophila are composed of four identical subunits. The contribution of a single subunit to the inactivation gating transition was investigated. Channels carrying a specific mutation in a single subunit can be labeled in a heterogeneous population and studied quantitatively with scorpion toxin sensitivity as a selection tag. Linkage within a single subunit of a mu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 41 38  شماره 

صفحات  -

تاریخ انتشار 2002